Beyond Babel - Simplifying Translation
with XML

Robin L a Fontaine <robin.laf ontaine@deltaxml.com>
Thomas Nichols <thomas.nichol s@del taxml.com>
Martin Bryan <martin@is-thought.co.uk>

Abstract

L ocalization of text to multiple target languages has always presented unique challenges. Although
it is easy to trandlate a single version of a document into different languages, it is much more
difficult to maintain translations over multiple versions of a document. First you need to find
out exactly what has changed, then find the equivalent places in the trandated document and
only then begin the update.

With the move to representing documents as structured XML comes a new set of technical
solutions based around intelligent three-way structured merging - synchronization. This paper
presents a comprehensive and generic solution to the problems of managing changing "source
language" documents and propagating those changesto trand ated versionsin multiple languages.

By processing the original source-language document, the original translated version and the
updated source-language text, we demonstrate how a "template" document can be generated
which is very much easier to process for re-translation. This merged document has the original
trangdation for any unchanged elements, and a template for any modified or new sections. By
identifying precisely what needs attention and possible re-trandation, and providing source-
language and original-trandlation versions of the text, re-trandation of complex documentation
sets managed by large teams becomes practicable. End-user interactive editing tools can be built
which simply process the resulting XML document.

We discuss the technical advantages of using Unified Deltasto archive files as well as the cost
reductions and reduced time to market made possible by giving the translation team what they
want - clear and simple indications of what has changed with "in situ" display of context. By
identifying both what has changed and the exact location of the change, our technique allows
trang ators to concentrate on what they do best - translating. Updating transl ations becomes less
expensive, less proneto error, and alot less tedious.

We present examples from real-world trandations, and discuss extensions to the basic scheme
outlined here. We show how this work builds upon existing intelligent XML change control
software, alowing merging of multiple XML documents into a single document as well as
tracking of changesin document structure and content. Thistechnique offersarevolution in text
trandlation which should be of interest to anyone involved in test translation - all made possible
by the adoption of XML.

Table of Contents

f.. Beyond Babel - Simplifying Tranglation With XMLc.coceeiuroieiueeieieecie et B
.1, Tranglation: the hidden cost of QIODAIIZAIONc.ccveiureueieieeeeeeeeeeee e, B
[1.2. Simplifying translation management using XML -savvy Synchronizationoceevveveveeninnenenn. €]
.3 HOW did We MaNAGE TNAETovveeeieeeeeeeeeee et A
4. The benefits of structured data COMPAISOHc..eveerieiueereeeeeteeeieeeteeteeete e e ereeeeeeee e g
5. CONCIUSIONG ...ttt ettt ettt et e e e e e, 10
BIDIOGIADNYvecve ettt 10
Proceedings by deepX Ltd. 1

Rendered by

http://www.renderx.com

Rendered by

Beyond Babel - Simplifying Translation with XML

1. Beyond Babel - Simplifying Translation with XML

1.1. Trandation: the hidden cost of globalization

As markets become globalized, more and more companies are facing the problem of maintaining multilingual
documentation. Where, in the past, one person would update asingle filewhen asmall error was noted in adocument,
today procedures have to be in place to ensure that any changes made to source language documentation are
reflected in all tranglations of the document. Translation is typically outsourced, outside the immediate control of
the documentation department, and timescales for trandation will differ from supplier to supplier. Instructions
need to be issued to a whole team of trandators, and the results of their work need to be integrated back into the
company's document repository before new releases of the documentation can be considered.

The first problem encountered when trandating updates to a source file is how to identify where changes have
been made. Even if programs with change tracking facilities are used to update the source, identifying where each
change has occurred, and ensuring that a matching changeis madeto the tranglated files, isatask that can be prone
to error. For structured documentati on, techniques that ensure the correct update of affected elements are essential.
Y et many XM L-based editing toolsdo not provide even basic facilitiesfor tracking change. Users of such programs
must rely on XML-aware differencing engines, such as DeltaXML, to identify where changes have been made.

The second problem faced by tranglatorsisto minimize re-trandation of already translated text. First thetrandators
need to identify the point in the original trandation file where the change occurred. Then they need to ensure that
any altered text isaccurately replaced by the relevant translation. Here users of XML have an advantage. Typically
trand ations have the same basic structure as the source file. If you know the XML path (XPath) to the translated
element there is a strong possibility that the XPath for the trandation is the same. Synchronization of changes at
paragraph level is safer in an XML environment than in an unstructured environment.

But what happens if the changes involve the addition of elements, perhaps resulting in the introduction of a new
level in the markup tree or the addition of anew sibling at a higher level? Synchronizing changes to the structure
of a source file is a much more complicated process. Some XML -based differencing engines report any changes
to the path of an element asadifference. Advanced XML -aware differencing engines, such as DeltaXML, are able
to resynchronize changes even when elements have changed their position within the parent el ement. By adopting
such tools, translators can accurately identify the minimal set of changes needed to adjust the structure of their
trandations, avital first step to ensuring that a matching change is made in the translated file.

To correctly update a structured document, a translator needs to be able to identify:

1. all elementsin the original file whose contents have changed in the updated file
2. any elementsthat have been added to the updated file

3. any elements which have been removed from the origina file

4. any words that have been added to the original file

5. any words that have been removed from the original file

6. any words whose position in the updated file differs from that in the original file.

Thislatter point can be difficult to determine accurately. Removal of an existing word, or addition of new words,

can result in the position of existing words changing. It is not sufficient to check if the nth word in an updated
element matches the nth word in the original. Accurate difference identification requires the checking of word
sequences to identify where the order of words has changed. Small changes, such as the addition of a punctuation
symbol, can easily be overlooked when visually examining the amended text, yet to atrandator the identification
of such changesisvital.

Finding where trandlation is required is only part of the problem. Trandators also need to ensure that changesin
the document structure are accurately propagated into the trand ated file. Thisrequiresthat elements whose structure
needsto be updated are clearly flagged within the trand ation, and that the relevant structural changes areindicated
inaform that makes updating the trand ation asimpl e process, involving minimal work onthe part of thetrandlator.

Proceedings by deepX Ltd. 2

IAMAN Rendar X CONT

http://www.renderx.com

Beyond Babel - Simplifying Translation with XML

DeltaXML's unique capability to synchronize changes between multiple files to create "unified deltas" provides
the basis for a simple-to-use technique for automating transl ation management. DeltaXML's ability to apply keys
to align elements whose position has changed in the data structure ensures that only significant changes are
reported. In addition, the DeltaX ML Translation Assistant allows the "trandation units' for which retranslation is
to be regquested to be controlled during data extraction.

1.2. Simplifying trandlation management using XM L -savvy synchronization
DeltaXML's solution to simplifying translation management is based on three key operations:

1. Comparing differencesin document structures.

2. Re-synchronizing comparisons at word boundaries.

3. Merging changesin document structures and contents.

Thesethreefunctionsareintegrated within DeltaX ML 's Unified Deltamultiple-file archiving facility, as described
in our XML 2003 paper on "Russian and XML : Designing Multi-Version XML Documents' [XML 2003]. As
each new version of afileis produced changes (deltas) to the contents or structure of elements are identified to
provide a minimal set of extensions to the Unified Delta file used to archive all versions of the document as a
singlefile. Typically asingle Unified Deltafilewill be used to archive versions of adocument produced inasingle
language. But Unified Deltas can provide an aternative approach to document archiving, allowing asinglefileto
contain all trandations of asingle version of adocument. Using such multilingual Unified Deltafilesit ispossible
to store al current trandations in a single source file without having to repeat the markup, or those parts of the
document, such as code examples, that do not change during translation.

An XML-savvy trandation management system can be built using Unified Delta files. The processinvolves:
1. ldentifying the previous translation and using that as the base for a Unified Deltafile.

2. Merging the trandation with the original source document (which will typically have an identical structure
but different contents).

3. ldentifying changes made to the source document since the translation was completed.
4. Removing unchanged source document elements, leaving the existing translation as the element content.

5. Removing original and trandation elementswhere an el ement has changed, leaving untransl ated content from
the updated source file.

For users familiar with revision control systems such as CV S this process, illustrated in the following diagram, is
comparable to the conflict resolution process when multiple users checkout the same version and the commit their
(conflicting) changes.

Source Source Editing Updated

Document Source

Transjation Pl Synchronized Translatio

LSS Unified Delta RECCRECH Template

Latest DeltaxhL Multilingual

Translation Caormparisan Unified
Delta

Proceedings by deepX Ltd. 3

Rendered by

http://www.renderx.com

Rendered by

Beyond Babel - Simplifying Translation with XML

1.3. How did we manage that?

Before demonstrating how Unified Delta files can be used to simplify the translation process it is important to
understand how changes are represented within Unified Delta files. The following set of "source files" illustrate
the types of changes that typically occur in XML documents. They demonstrate:

1. changesto element content
2. changesto element structure.

In this paper we are not illustrating changes to attribute values, whose handling was explained in the paper

presented at XML 2003 [XML 2003].

Initially aUnified Deltafile is created by adding two attributes to the root element of the base (first) version of a
file. Thefirst attribute is a namespace identifier assigned to files processed using the Unified Delta suite:

xm ns: dxu="http://ww. del t axm . com ns/ uni fi ed-del ta-v1"

The second attribute, dxu: vset , stores the identifier of the base version of the document, between a pair of ver-
tical bars (the pipe symbol). As each revision is made to the file a vertical bar and a new version identifier are
added to the start of the list. For example, when three versions of afile have been produced the attribute value on
the root element might have the form:

dxu:vset="]1.2|1.1]1.0"

The last version identifier in the list always indicates the base version of the document, while preceding version
indicators identify the order in which changes have been added to the archive.

During processing adxu: vset attribute is assigned to each embedded element, the values being inherited from
the parent element if none have been assigned locally. The archivefile, however, only records version information
in those cases where the value of the attribute differs from that of the dxu: vset attribute of its parent element. In
all casesthe value of adxu: vset attribute will be a subset, or implied copy, of the values assigned to the parent
element.

The following base version will form the basis of the short examples used to demonstrate the creation of Unified
Deltafiles:

<st at enent nade- by="Robi n" approved- by="Thonmas"
xm ns: del taxm ="http://ww. del taxm . coni ns/ wel | - f or med- del ta-v1" >
<p id="pl">DeltaXM. allows you to:
<list type="bulleted">
<itenpldentify and display changes in
<acr onym neani ng="Ext ensi bl e Mar kup Language">XM.</ acr onynp
files</itenp
<i tem del taxm : key="I| ast " >Manage changes to XM. docunents.</itenp
</list>
</ p>
</ st at ement >

Wehaveadded adel t axm : key attributeto thelast iteminthelist aswewant it to remain thelast item, irrespective
of changes made to the contents of thelist. Thedel t axml namespace prefix definition has, therefore, been added
to the root element.

Thisst at ement must be assigned, during the creation of the archivefile, anidentifier, such as 1. 0, that isto be
used to distinguish this version from others in the archive. When the archive file isinitially created it will have
the form:

<statenent xm ns:deltaxm ="http://ww. del taxm . com ns/wel | -fornmed-delta-v1"
xm ns: dxu="http://ww. del t axm . coni ns/ uni fi ed-del ta-v1" dxu:vset="|1.0]

Proceedings by deepX Ltd. 4

IAMAN Rendar X CONT

http://www.renderx.com

Beyond Babel - Simplifying Translation with XML

appr oved- by="Thonas" nmde- by="Robi n">
<p id="pl">DeltaXM. allows you to:
<list type="bulleted">
<itenrldentify and display changes in
<acr onym neani ng="Ext ensi bl e Mar kup Language">XM.</ acr onyn®
files</itenr
<i tem del taxm : key="I ast " >Manage changes to XM. docunents.</itenp
</list>
</ p>
</ st at ement >

Note that the attributes of the root el ement have been augmented by the Unified Delta namespace declaration and
avset attribute.

1.3.1. Recording changesto element content

If one or more words in a section of the document whose model is PCDATA (parsed character data) in the XML
fileare changed, apair of dxu: PCDATA elements are generated to record the change(s) made. In the case of mixed
content, where one or more elements are embedded within data streams, as shown in thefirst item of the example
file, each segment of parsed character data is compared separately. For example, if the second version of our
statement, identified asversion 1. 1, is altered to read:

<st at enent made- by="Robi n" approved- by="Thomas" >
<p id="pl">DeltaXM allows you to:
<list type="bulleted">
<itenrldentify, display and process changes in
<acr onym neani ng="Ext ensi bl e Mar kup Language">XM_</ acr onymne
files</items
<i tem del t axm : key="1 ast " >Manage changes to XM. docunents.</itenp
</list>
</ p>
</ st at ement >

the resulting archive will have the form:

<st at enent
xm ns: del taxm ="http://ww. del t axml . conl ns/wel | - f or ned- del t a-v1"
xm ns: dxu="http://ww. del taxm . com ns/ uni fi ed-del ta-v1" dxu:vset="|1.1]|1.0]|"
appr oved- by="Thonmas" made- by="Robi n">
<p id="pl">DeltaXM. allows you to:
<list type="bulleted">
<itenp
<dxu: PCDATA dxu:vset="|1.1| ">l dentify, display and process changes in </dxu: PCDATA>
<dxu: PCDATA dxu:vset="|1.0|">ldentify and di splay changes in </dxu: PCDATA>
<acronym meani ng="Ext ensi bl e Markup Language">XM.</ acr onyn®
files
</itenpr
<item del taxnl : key="I ast " >Manage changes to XM. documents. </itenp
</list>
</ p>
</ st at ement >

Note that the second part of parsed character data for the first item, like the text for the second item, has not been
changed. Asit appliesto al versions of the archived fileit is not enclosed in adxu: PCDATA element.

1.3.2. Recording changes to element structure
Changesin element structure take place in three clearly clearly distinguishable circumstances:

1. Theaddition of a new element between existing elements.

Proceedings by deepX Ltd. 5

Rendered by

http://www.renderx.com

Beyond Babel - Simplifying Translation with XML

2. The addition of anew element within PCDATA to create mixed content.
3. Theremoval of an existing element.

The following version of our statement, identified as 1. 2, illustrates how Unified DeltaXx ML handles the three
main types of changes to element structure:

<st at enent nmde- by="Robi n" approved- by="Thonmas" >
<p id="pl"><enphasi s>Del t aXM_</ enphasi s> al | ows you to:
<list type="bulleted">
<itenpldentify, display and process changes in XM. files</itenp
<i tenmSynchroni ze concurrent edits</itenr
<i tem del taxm : key="I ast ">Manage changes to XM. docunents.</itenp
</list>
</ p>
</ st at ement >

In this example a new element has been used to emphasize part of the contents of the paragraph heading. In the
embedded list the embedded acr onymelement in the first item has been removed, and anew item has been added
between the two items listed in the first two versions.

When thisversion is used to update the archive containing versions 1. 0 and 1. 1, thefollowing unified archiveis
Crested:

<st at enent
xm ns: del taxm ="http://ww. del t axm . conl ns/wel | - f or ned- del t a-v1"
xm ns: dxu="http://ww. del t axm . com ns/ uni fi ed-del ta-v1" dxu:vset="|1.2|1.1]1.0]"
appr oved- by="Thonmas" made- by="Robi n">
<p id="pl"">
<enphasi s dxu:vset="| 1. 2| ">Del t aXM.</ enphasi s>
<dxu: PCDATA dxu:vset="]|1.2|"> allows you to: </dxu: PCDATA>
<dxu: PCDATA dxu: vset="|1.1| 1. 0| ">Del taXM. al |l ows you to: </dxu: PCDATA>
<list type="bulleted" >
<itenp
<dxu: PCDATA dxu: vset="|1.2|">ldentify, display and process changes in XM fil es</dxu: PCDAT/
<dxu: PCDATA dxu: vset="|1.1| ">l dentify, display and process changes in </dxu: PCDATA>
<dxu: PCDATA dxu: vset="|1.0| ">l dentify and di spl ay changes in </dxu: PCDATA>
<acronym dxu:vset="|1.1]1.0]" meani ng="Extensi bl e Markup Language">XM.</acronynm>
<dxu: PCDATA dxu: vset="|1.1|1.0] "> fil es</dxu: PCDATA>
</itenpr
<item dxu: vset="| 1. 2| ">Synchroni ze concurrent edits</itenp
<i tem del t axm : key="1 ast " >Manage changes to XM. docunents.</itenp
</list>
</ p>
</ st at ement >

="
t

There are now three versions for the first fragment of PCDATA in the first item, and the second fragment of
PCDATA, and the embedded acr onymelement, are now flagged as only applyingto versions1. 0 and 1. 1 of the
file. There are two versions of the text of the paragraph heading, the first applying only to version 1. 2 while the
second appliesto both version1. 0 and 1. 1.

The last item, however, has no dxu: vset attribute as it shares the value assigned to the | i st element, which
shares the value assigned to its parent, p, which inherits its values from the root element, st at enent . Note that,
though this text was originally the second item in the list, no change to the text of the second item has been
reported. Thisis because DeltaXML keys alow changesin order within a set of siblings to be ignored.

1.3.3. Why the additional markup?

At this stage you may be wondering about the efficiency of the archives when so many new elements have been
added to thefile. In practice few fileswill contain the number of changes deliberately madein thissingle paragraph

Proceedings by deepX Ltd. 6

Rendered by

http://www.renderx.com

Beyond Babel - Simplifying Translation with XML

example. We have set out to demonstrate four different types of change to afile within a single paragraph and
have, only left one element unchanged.

Typically only asmall percentage of paragraphs or embedded elements are changed during arevision cycle. Most
elements will be unchanged. Elements that never change are stored only once, in their original form (as the last
i t emshows). Elements that are removed have an attribute added that shows which versions of the file they were
used in. Elements that are added have asingle attribute added to their contents, whose value is extended each time
anew version is added. It is only changes to content that produce extra markup, and thisis minimized to asingle
namespace-controlled element and attribute per altered PCDATA segment or attribute value. Theresult isavery
compact representation of the differing versions.

It should be noted that the basic form of the archiveis controlled by the form of the base document. Once the ele-
ments controlled by the DeltaX ML namespaces are removed the tree structure of the document becomes acombin-
ation of all thetreesused for the multiple versions. Each version of the embedded file can be recreated by selecting
those elements whose actual or implied dxu: vset attribute contains the relevant version identifier.

1.3.4. Storing trandlations as different versions

Our integrated approach to version archiving means you can transmit al translations of a particular document as
asingle XML file. In this scenario the source language is stored as the base version of the document, and each
trandation is stored as a delta to the source. Version identifiers show how many languages the document has so
far been trandated into. The following example shows how version 1.2 of our statement could be stored asamul-
tilingual version:

<st at enent
xm ns: del taxm ="http://ww. del taxm . com ns/wel | -fornmed-delta-v1l"
xm ns: dxu="http://ww. del t axm . coni ns/ uni fi ed-del ta-v1"
dxu: vset ="| Ger man| French| Engl i sh| "
appr oved- by="Thonmas" made- by="Robi n">
<p id="pl">
<enphasi s>Del t aXM_</ enphasi s>
<dxu: PCDATA dxu:vset="| German| "> erl aubt: </dxu: PCDATA>
<dxu: PCDATA dxu: vset="| French| "> vous pernet: </dxu: PCDATA>
<dxu: PCDATA dxu: vset="| English|"> allows you to: </dxu: PCDATA>
<list type="bulleted">
<itenp
<dxu: PCDATA dxu: vset
<dxu: PCDATA dxu: vse
<dxu: PCDATA dxu: vse
</itenp
<itenp
<dxu: PCDATA dxu: vset
<dxu: PCDATA dxu: vse
<dxu: PCDATA dxu: vse
</itenpr
<item del taxnl : key="| ast" >
<dxu: PCDATA dxu: vset ="| Ger man| ">Handhabung von Anderungen an den XM.- Dokunent en. </ dxu: PCDAT
<dxu: PCDATA dxu: vset ="| French| ">de gerer |es changenents dans | es docunents XM.. </ dxu: PCDAT
<dxu: PCDATA dxu: vset ="| Engl i sh| ">Manage changes to XM. docunents. </ dxu: PCDATA>
</itenpr
</list>
</ p>
</ st at ement >

"| Ger man| " >Kennzei chnung, Anzei ge an und verarbeite von Anderungen an
"| French|">d"identifier et de visualiser |es changenments dans les fich
"| English|">ldentify, display and process changes in XM/|files</dxu: PC

t
t

="| German| " >Synchroni sieren Sie d eichl auf endes redigi ert </ dxu: PCDATA>
="| French| ">de synchroniser |es nodifications faites sinultanenent</dxt
="| En

t
t gl i sh|">Synchroni ze concurrent edits</dxu: PCOATA>

1.3.5. Updating a specific language version
When we need to update tranglations to reflect changes made to the master language all we needto dois:

1. Extract the current version of the foreign language to be updated, and make that the base version for the
Unified Deltafile.

Proceedings by deepX Ltd. 7

Rendered by

http://www.renderx.com

Rendered by

Beyond Babel - Simplifying Translation with XML

2. Extract the version of the master file from which the last trandation was taken (normally the one with the

same version number as the translation) and add that to the Unified Deltafile.

3. Extract a subsequent update to the master language and add this to the Unified Deltafile.

o

release English French
“ersion “ersion
. 1.1
Template

' Translator

French
WErsion
1.2

English
YWersion
12

release

English French

If our source files are version 1.1 of our demonstration file, and we want to create a template that can be used to

create atrangdlation for the French edition of version 1.2, we can create the following Unified Delta:

<statenment xm ns:deltaxm ="http://ww.del taxm .coni ns/well -fornmed-delta-v1"
xm ns: dxu="http://ww. del taxm . com ns/ uni fi ed-delta-v1"
dxu: vset ="| Engl i sh-1. 2| Engl i sh-1. 1| French-1. 1| "
appr oved- by="Thonmas" made- by="Robi n">
<p id="pl">
<enphasi s dxu:vset="| English-1. 2| ">Del taXM_</ enphasi s>
<dxu: PCDATA dxu: vset="| English-1.2|"> allows you to:
</ dxu: PCDATA>
<dxu: PCDATA dxu: vset
<dxu: PCDATA dxu: vset
<list type="bulleted">
<itenp
<dxu: PCDATA dxu: vse

="| English-1.1|">DeltaXM. all ows you to: </dxu: PCDATA>
="| French-1. 1| ">Del taXML vous pernet: </dxu: PCDATA>
English-1.2|">ldentify, display and process changes in
<dxu: PCDATA dxu: vse English-1.1|">ldentify and display changes in </dxu: PCl
<dxu: PCDATA dxu: vset="| French-1.1|">d'identifier et de visualiser |es changent
<acronym dxu:vset="| English-1.1| French-1.1|" meani ng="Ext ensi bl e Markup Lang
<dxu: PCDATA dxu: vset ="| English-1. 1| ">fil es</dxu: PCDATA>
</itenr
<i tem dxu: vset ="| Engl i sh-1. 2| ">Synchroni ze concurrent edits</itenr
<i tem del taxnl : key="I| ast ">
<dxu: PCDATA dxu: vset ="| Engl i sh-1.2| English-1.1|">WVanage changes to XM. documne
<dxu: PCDATA dxu: vset ="| French-1. 1| ">de gerer |es changenents dans |es docunent
</itenp
</list>
</ p>
</ st at enent >

t
t

While this version of the file clearly displays both the original and updated versions of the source document, and
the last version of the trandlation, it can be somewhat overpowering for trandators! A number of techniques can
be used to overcome this, including:

1. Converting thefile to a browsable form with the different versions shown in different colours (e.g. green for
unchanged source, red for changed source and blue for translated text).

XM fil es</dx
DATA>

ent s dans | es

uage" >XM.</ acr

Nt s. </ dxu: PCDA
s XM.. </ dxu: F

Proceedings by deepX Ltd. 8

IAMAN Rendar X CONT

http://www.renderx.com

Rendered by

Beyond Babel - Simplifying Translation with XML

2. Extracting the different versions for display in different windows, which can be synchronized given suitable
editing tools.

3. Creating arevised source file containing the previously trandated version of al unchanged elements and the
revised source language version of all changed elements.

For our example file this last process could result in afile of the form:

<statenent xm ns:deltaxm ="http://ww.del taxm .conins/well -fornmed-delta-v1"
xm ns: dxu="http://ww. del t axm . conl ns/ uni fi ed-del ta-v1"
xm ns: dxt="http://ww. del taxm . coni ns/transl ate-v1"
appr oved- by="Thonas" nade- by="Robi n">
<p id="pl" dxt:transl ated="no">
<enphasi s dxt:transl ated="no">Del t aXM_</ enphasi s>al | ows you:
<list type="bulleted">
<item dxt:transl ated="no">ldentify, display and process changes in XM files</i
<i tem dxt:transl at ed="no">Synchroni ze concurrent edits</itenr

</list>
</ p>
</ st at ement >

The elements to be trandlated are clearly identified by adxt : t r ansl at ed="no" attribute. In this heavily edited
example many of the elements have been flagged as needing retranglation, but note that only those elements whose
contents have been changed have been flagged in this way. In practice such flags will only be applied to a small
proportion of the elements in afile, allowing changed elements to be quickly identified using the most basic of
searching tools.

Asthefileistrandated thedxt : t r ansl at ed="no" attributes can be deleted, leaving thefileinthe original state,
except for the additional namespace declarations on the root el ement, which in no way affect the processing of the
file. Alternatively astylesheet can be used to remove the namespace-controlled attributes and the added namespace
declarations once trand ation has been completed. The trandated file is then in aform that can be used to update
the Unified Deltaarchive for the language concerned, aswell as providing the basisfor the production of arevised
version of the document.

While the simplified format shown above can be sufficient for basic trandations there will be occasions where
elementsfrom both source files need to be retained for the transl ation templ ate. In addition, some degree of control
is required to ensure that only changes to relevant "trandlation units' are reported. The DeltaXx ML Trandation
Assistant will allow you to identify which elements should be treated as trandation units, e.g. paragraphs and list
items, so that changes to embedded elements do not get reported out of context.

1.4. The benefits of structured data comparison

M ost permanent documents have multiple versions. Identifying the differences between versions can be a complex
task, which is prone to error. With structured data, such as that found in files coded using the Extensible Markup
Language (XML), the problem is compounded by the fact that changesin markup and inter-element spacing may
not be significant. Most version control systems (for example CVS or RCS) operate on a textual, line-by-line
basis, and do not provide facilities for accurately identifying differences between structured documents.

Change management of XML files can be simplified by using DeltaXML's Unified Delta API to create an archive
that records the changes (deltas) made as each new version of afileiscreated. A Unified Deltafile consists of an
initial base version to which have been added a set of deltas that show changes made to elements, attributes or
content required to generate alternative versions. By restricting change recordsto the smallest changed component
(astring of parsed character data or the smallest containing element of mixed content), and only storing unchanged
datain the base version, the size of Unified Deltafilesis minimized.

The Unified Delta suite optimizes the storage of multiple XML versions by using the DeltaXML differencing
engineto identify true differences between structured documents. Differencing engines based on string comparison
cannot identify when the only differences between two versions of a file are cosmetic ones such as the order of
attributes or a change in an XML namespace prefix, which have no impact to the way in which XML-encoded

Proceedings by deepX Ltd. 9

IAMAN Rendar X CONT

tenr

<item del taxm : key="I| ast">de gerer |es changenents dans | es docunments XM..</iten>

http://www.renderx.com

Beyond Babel - Simplifying Translation with XML

data can be processed. Differencing engines that do not understand structural context are unable to follow the
structural correspondence between documents, and cannot be used to propagate structural changes acrosslanguage
versions.

Because Unified Delta files are XML files they can be processed using XML toolkits. In particular, they can be
restructured and formatted using XML Stylesheet Language Transformations (XSLT). They can also bereferenced
using XPath or XPointer, XML's standard tools for identifying XML components. Such transformations can be
used to:

1. Convert filesinto aform that can be displayed by any web browser.
2. Extract different versions for display in different windows.
3. Createarevised source file containing all unchanged elements and all changed elements.

While trandlation services can be developed using al three approaches, the third approach isthe only one that will
ensure that structural changes made to the XML tree will be accurately reflected in trandated files, significantly
reducing the possibility of human error during the identification of change points and their transfer to multiple
trandlations of the sourcefile.

The DeltaXML Trandation Assistant will be supplied as a Java API. for use as part of a piped set of operations
invoked during document processing. Integration with XML editorswill provide easy-to-use editing environments
based on automated integration of existing tranglations and new material.

1.5. Conclusions

This paper describes a new approach to managing translation that takes advantage of the power of XML, using
XML-aware comparison toolsto identify precisely what has changed between versions and to simplify subsequent
re-translation. The process described removes the difficult and error-prone hand manipulation previously required
to update translated documents, allowing a simpler and more creative translation process. Speeding the process of
updating content in multiple target languages while improving quality and manageability, the strategy outlined
here allows rigorous change control when delivering content to a global audience. Throughout, the process is
powered by XML.

Bibliography

[XML 2003] "Russian Dalls and XML: Designing Multi-Version XML Documents", Proceedings of XML 2003
Conference, IDEAIlliance, December 2003 (copy available from http://www.deltaxml.com/unified/multi{
\ersion-paper.html)).

Biography

Robin La Fontaine
CEO
DeltaxML (Monsell EDM Ltd)
Upton-on-Severn
United Kingdom
robin.lafontaine@deltaxml.com

Robin La Fontaine has a degree in Engineering Science from the University of Oxford and a Masters degree
in Computer Science. He viewsthe ability to handle changeintelligently as essential for a successful company.
His company has devel oped a method for finding and representing changesin XML documents and data and
this is implemented as DeltaXML. Robin has contributed to the STEP XML Working Group within 1SO
(1S010303). He has been project manager of several European research projects including the XML/EDI
European Pilot Project. His background isin CAD data exchange and Lisp programming.

Proceedings by deepX Ltd. 10

Rendered by

http://www.deltaxml.com/unified/multi-version-paper.html
http://www.deltaxml.com/unified/multi-version-paper.html
http://www.renderx.com

Rendered by

Beyond Babel - Simplifying Translation with XML

Thomas Nichols

CTO

DeltaXML (Monsell EDM Ltd)
Upton-on-Severn

United Kingdom

thomas.nichol s@deltaxml.com

Thomas Nichols has been developing commercial software since he caught the OO bug in 1986, and saw the
advent of XML in 1998 as his escape from EDI. His interest throughout his career has been in practical
implementation of rocket-science technol ogy to solvereal-world problems, heisnow greatly enjoying putting
his commercial experience into practice steering the technical implementation of DeltaXML, which he sees
as arevolutionary technology. Thomas is a skilled Java and C++ programmer, working with cross-platform
technologies and happiest in a"heterogeneous environment”. XML is one of his very favourite beasts.

Martin Bryan

|S-Thought

Churchdown

United Kingdom
martin@is-thought.co.uk

Martin Bryan has been atechnical author and software tester for more than two decades. He has represented
the UK oninternational standards committeesworking on structured documentation standards such as SGML,
DSSSL and Topic Mapsfor most of this period, and has been actively involved in promoting the use of XML
and related standard within Europe for the last decade.

Proceedings by deepX Ltd. 11

IAMAN Rendar X CONT

http://www.renderx.com

