
content.xml

styles.xml

meta.xml

content.xml

styles.xml

meta.xml

content.xml

styles.xml

meta.xml

Binary object(OLE or image)

XSLT Filter

Java Filter

Memory buffer

DeltaXML Comparator

Styles Pipeline

Auto-Styles Pipeline

Content Pre-compare

Content Pipline

Meta Pipeline

ODT Comparator Pipeline

0

200

400

600

800

5 stages 10 stages 15 stages 20 stages

M
e
m

o
r
y
 r

e
q
u
ir

e
d
 (

M
B

)

JAXP s9api ST s9api MT calabash

0

7.5

15.0

22.5

30.0

5 stages 10 stages 15 stages 20 stages

R
u
n
ti
m

e
 (

s
e
c
)

JAXP s9api ST s9api MT Calabash

/* s9api 5 stages single-trigger */
public static void main(String[] args)
 throws SaxonApiException
{
 Processor proc= new Processor(false);
 XsltCompiler comp= proc.newXsltCompiler();
 XdmNode in= proc.newDocumentBuilder().build(new StreamSource(new File(args[0])));
 Serializer out= new Serializer();
 out.setOutputFile(new File(args[1]));
 XsltTransformer stage1=
 comp.compile(new StreamSource(new File("stage1.xsl"))).load();
 XsltTransformer stage2=
 comp.compile(new StreamSource(new File("stage2.xsl"))).load();
 XsltTransformer stage3=
 comp.compile(new StreamSource(new File("stage3.xsl"))).load();
 XsltTransformer stage4=
 comp.compile(new StreamSource(new File("stage4.xsl"))).load();
 XsltTransformer stage5=
 comp.compile(new StreamSource(new File("stage5.xsl"))).load();
 stage1.setDestination(stage2);
 stage2.setDestination(stage3);
 stage3.setDestination(stage4);
 stage4.setDestination(stage5);
 stage5.setDestination(out);
 stage1.setInitialContextNode(in);
 stage1.transform();
}

/* s9api 5 stages multi-triggered */
public static void main(String[] args)
throws SaxonApiException
{
 Processor proc = new Processor(false);
 XsltCompiler comp = proc.newXsltCompiler();
 XdmNode in= proc.newDocumentBuilder().build(new StreamSource(new File(args[0])));
 Serializer out= new Serializer();
 out.setOutputFile(new File(args[1]));
 XsltTransformer stage1=
 comp.compile(new StreamSource(new File("stage1.xsl"))).load();
 XsltTransformer stage2=
 comp.compile(new StreamSource(new File("stage2.xsl"))).load();
 XsltTransformer stage3=
 comp.compile(new StreamSource(new File("stage3.xsl"))).load();
 XsltTransformer stage4=
 comp.compile(new StreamSource(new File("stage4.xsl"))).load();
 XsltTransformer stage5=
 comp.compile(new StreamSource(new File("stage5.xsl"))).load();

 XdmDestination stage1result= new XdmDestination();
 stage1.setDestination(stage1result);
 stage1.setInitialContextNode(in);
 stage1.transform();

 in= null;
 XdmDestination stage2result= new XdmDestination();
 stage2.setDestination(stage2result);
 stage2.setInitialContextNode(stage1result.getXdmNode());
 stage2.transform();

 stage1result= null; stage1= null;
 XdmDestination stage3result= new XdmDestination();
 stage3.setDestination(stage3result);
 stage3.setInitialContextNode(stage2result.getXdmNode());
 stage3.transform();

 stage2result= null; stage2= null;
 XdmDestination stage4result= new XdmDestination();
 stage4.setDestination(stage4result);
 stage4.setInitialContextNode(stage3result.getXdmNode());
 stage4.transform();

 stage3result= null; stage3= null;
 XdmDestination stage5result= new XdmDestination();
 stage5.setDestination(out);
 stage5.setInitialContextNode(stage4result.getXdmNode());
 stage5.transform();

 stage4result= null; stage4= null;
 stage5result= null; stage5= null;
}

/** JAXP 5 stages */
public static void main(String[] args)
throws TransformerException, TransformerConfigurationException
{
 TransformerFactory tf= TransformerFactory.newInstance();
 if (!tf.getFeature(SAXSource.FEATURE) ||
 !tf.getFeature(SAXResult.FEATURE) ||
 !tf.getFeature(SAXTransformerFactory.FEATURE) ||
 !tf.getFeature(SAXTransformerFactory.FEATURE_XMLFILTER))
 throw new Error("SAXTransformerFactory not supported");
 SAXTransformerFactory stf= (SAXTransformerFactory) tf;

 XMLFilter stage1= stf.newXMLFilter(new StreamSource("stage1.xsl"));
 XMLFilter stage2= stf.newXMLFilter(new StreamSource("stage2.xsl"));
 Transformer stage3= stf.newTransformer(new StreamSource("stage3.xsl"));
 TransformerHandler stage4=
 stf.newTransformerHandler(new StreamSource("stage4.xsl"));
 TransformerHandler stage5=
 stf.newTransformerHandler(new StreamSource("stage5.xsl"));
 stage2.setParent(stage1);
 stage4.setResult(new SAXResult(stage5));
 stage5.setResult(new StreamResult(args[1]));
 stage3.transform(new SAXSource(stage2, new InputSource(args[0])),
 new SAXResult(stage4));
}

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc"
 name="five-stages" version="1.0"
 xmlns:dx="http://www.deltaxml.com/ns/extensions/xproc"
 xmlns:cx="http://xmlcalabash.com/ns/extensions"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:c="http://www.w3.org/ns/xproc-step">

 <p:input port="source" kind="document" sequence="false" primary="true"/>
 <p:input port="parameters" kind="parameter" primary="false"/>
 <p:output port="result" sequence="false" primary="true"/>

 <p:xslt>
 <p:input port="stylesheet">
 <p:document href="stage1.xsl"/>
 </p:input>
 <p:input port="parameters"/>
 </p:xslt>
 <p:xslt>
 <p:input port="stylesheet">
 <p:document href="stage2.xsl"/>
 </p:input>
 </p:xslt>
 <p:xslt>
 <p:input port="stylesheet">
 <p:document href="stage3.xsl"/>
 </p:input>
 </p:xslt>
 <p:xslt>
 <p:input port="stylesheet">
 <p:document href="stage4.xsl"/>
 </p:input>
 </p:xslt>
 <p:xslt>
 <p:input port="stylesheet">
 <p:document href="stage5.xsl"/>
 </p:input>
 </p:xslt>
</p:declare-step>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xhtml="http://www.w3.org/1999/xhtml" version="1.0">

 <xsl:output method="xml"/>

 <!-- identity template -->
 <xsl:template match="@*|node()">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
 </xsl:template>

 <xsl:template match="xhtml:body">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 <xhtml:p>This is a new paragraph inserted by the stage1 filter</xhtml:p>
 </xsl:copy>
 </xsl:template>

</xsl:stylesheet>

Simple Benchmarks Case Study

XML Pipeline Performance
Nigel Whitaker, Tristan Mitchell, DeltaXML Ltd.

Data:
The data passed through the pipeline is the XSLT2.0 specification. This is an
xhtml file. However, at 1.6MB it is fairly small, so the contents of the <div>s
inside the <body> were duplicated 10 times using a text editor to create a 16MB
input file.

Pipelines:
JAXP Pipeline uses features present in JDK 1.4 and later. The XMLFilter and
TransformerHandler classes from a TransformerFactory allow XSLT processing
pipelines to be constructed.
s9api ʻSingle Triggerʼ uses a simple way of chaining pipelines in the s9api package
provided with Saxon v9.0 and subsequent releases.
s9api ʻMulti Triggerʼ is designed for easy garbage collection of intermediate trees.
The Calabash pipeline uses XProc and uses the same filters as the other
pipelines.

Details:
Saxon Version: HE 9.2.0.6j
Calabash version: 0.9.19
Java version: 1.6.0_17 (64 bit server VM)
Hardware: MacBook Pro, 2.53 GHz Core 2 Duo
OS: MacOS 10.6.2

Observations:
JAXP appears slower than the other s9api based approaches using Saxonʼs
XdmNode/TinyTree data structures: shared namepool, simpler/faster integer rather
than char[]/String events.
Care is needed to ensure garbage collection of previous intermediate trees after
the pipeline stage finishes and dependent stages have used the data.
These results were repeated to check the latest releases of Saxon and Calabash -
we discovered that memory consumption had decreased since the first
experiments using Saxon 9.1 in May 2009.

Pipeline runtime (min:sec) minimum memory (MB)

JAXP 5:14 933

s9api 4:05 457

Calabash 4:42 1631

s9api + optimizations 3:12 360

The code:
The case study is of an ODT Comparator. It uses a mixture of Java and XSLT
Filters, parsers, serializers, Java code for handling ZIP files, XSLT extension
functions for image/OLE comparison and our XML Comparator.

History:
The first implementation used JAXP pipelining as its basis. For the 700 page
documents in question, we were asked why it needed 1GB of Java heap space!

The simple benchmark experiments last year confirmed our hunch that
intermediate trees were not being garbage collected. The s9api experiments
were successful and we started on an initial s9api based pipeline which halved
memory requirements. Optimization is ongoing and through some of the
techniques described here we are close to 360MB. However further
optimizations are being planned - our, perhaps optimistic, target is 100MB of
heap memory.

The Calabash figures are presented because we were more generally curious
about performance and while we probably will not change our Java/s9api based
implementation at this time, we will use XProc/Calabash for other projects.

Details:
Saxon Version: B 9.1.0.7j
Calabash version: 0.9.15
Java version: 1.6.0_17 (64 bit server VM)
Hardware: MacBook Pro, 2.53 GHz Core 2 Duo
OS: MacOS 10.6.2

Results:

private XdmNode runJavaFilter(XMLFilterImpl f, XdmNode input)
 throws SaxonApiException, XPathException
{
 Sender s= new Sender(pc);
 ContentHandlerProxy chp= new ContentHandlerProxy();
 XMLPushFilter pf= new XMLPushFilterAdapter(f);
 chp.setUnderlyingContentHandler(pf);
 chp.setLexicalHandler(pf);
 chp.setPipelineConfiguration(pc);
 ReceivingContentHandler rch= new ReceivingContentHandler();
 rch.setPipelineConfiguration(pc);
 pc.setLocationProvider(null);
 // rch.setDocumentLocator((Locator) pf); // ToDo: investigate/test Locator
 XdmDestination result= new XdmDestination();
 rch.setReceiver(result.getReceiver(config)); // throws SaxonApiException
 pf.setResult(new SAXResult(rch));
 s.send(input.asSource(), chp); // throws XPathException
 input= null; rch= null; chp= null; s= null;
 return result.getXdmNode();
}

Java Filters:
Java filters were used in the JAXP implementation (primarily for a streaming and thus
low-memory overhead). They are supported directly as SAX XMLFilters and via an
adapter as replacements for TransformerHandlers.

The initial processing model for the s9api pipelines uses XdmNode trees as the
intermediate data structures between pipeline stages. Code was developed run a
SAX XMLFilter as shown below:

In order to create an equivalent pipeline component for Calabash the s9api code
above was easily adapted to create an extension step with the declaration:

<p:declare-step type="dx:java-filter">
 <p:input port="source" primary="true" kind="document" sequence="false"/>
 <p:input port="parameters" kind="parameter"/>
 <p:output port="result" primary="true" sequence="false"/>
 <p:option name="classname" required="true" cx:type="xs:string"/>
</p:declare-step>Optimization: Java filter streaming/combiming

While the overall s9api performance is better than JAXP, using XdmNodes
between Java filters precludes possible event streaming. The method used to
process a single filter can be extended to process a list of filters quite easily using
the setParent() technique.

private XdmNode runJavaFilters(XMLFilterImpl[] filters, XdmNode input)
 throws SaxonApiException, XPathException
{ ... }

finished r[0] (Id: com...filters.dx2.wbw.OrphanedWordOutfilter)
 (elapsed: 2897 ms, cpu: 2507 ms)
finished r[1] (Id: com...filters.dx2.wbw.OrphanedWordOutfilter)
 (elapsed: 2825 ms, cpu: 2468 ms)
finished r[2] (Id: com...filters.dx2.wbw.WordSpaceFixup)
 (elapsed: 3063 ms, cpu: 2634 ms)
finished r[3] (Id: com...pdf.filters.ChangeMetricsFilter)
 (elapsed: 2724 ms, cpu: 2400 ms)
finished r[4] (Id: com...filters.dx2.wbw.WordOutfilter)
 (elapsed: 2585 ms, cpu: 2257 ms)

finished r[0]-r[4] (elapsed: 5347 ms, cpu: 4724 ms)

By adding a new method and applying it where adjacent filters are identified speed-
ups can be achieved as indicated by the progress output. Here is the non-optimized
output (from the 5 Java/blue filters in the content pipeline above):

The above 5 filters take 12,226 ms of CPU time; after the
optimiztion time time is more than halved:

Optimization: Filter conversion
As well as streaming filters together another route to performance
improvement is to consider the how filters are coded. By implementing
the ProxyReceiver and related methods we avoid the cost of event
conversion and associated NamePool access. We have implemented
this conversion for one filter 'WordSpaceFixup', as the progress log
below indicates the runtime is reduced by over half:

finished r[2] (Id: com...filters.dx2.wbw.WordSpaceFixup)
 (elapsed: 992 ms, cpu: 809 ms)

Future directions
Using temporary trees and modes it may be possible to merge filters
together in a single transformation. This may save time, but we no longer
have explicit control of the garbage collection of the intermediate trees.
Another issue is that when existing filters already use modes, the design
of an automatic merging process becomes slightly harder.

The saxon:next-in-chain attribute can be used to create pipelines.
One slight dis- advantage is that it hardwires the pipeline structure into
the filters and has slight reusability implications (a filter may be reused in
different pipelines and may be followed by different filters).

For very simple filters we are doing a lot of serialization and tree-building.
Most of the time is spent running the 'identity template' in many filters.
Perhaps we can instrument and quantify how much time is spent running
this filter as opposed to other filters. If it is substantial, we could consider
using a persistent in memory data structure (perhaps a form of DOM with
XPath support) and then have Java methods for modifying and updating
it. We prefer the XSLT processing model and DOM trees can consume a
lot of memory; perhaps XQuery Update could be used as an alternative
approach to replace one or more filter stages.

!"#$%&'()$*+),'-)+'./0

Content
Handler
Proxy

Receiving
Content
Handler

XMLFilter

XdmNode XdmNode

Xdm
Destination

ThreadMXBean mx= ManagementFactory.getThreadMXBean();
MemoryMXBean mb= ManagementFactory.getMemoryMXBean();
long start= System.nanoTime();
long startCPU= mx.getCurrentThreadCpuTime();

JVM Support
The java.lang.management interface provides access to JVM telemetry
information, including information about the various Java heap space
'generations'. Information is also available about total and thread CPU times.
We are making use of these APIs in our code and this will then allow more
informed experimentation with different garbage collectors and their command-
line options.

The VisualVM introduced in 1.6.0_7 and earlier command-line tools such as jstat
and jmap are also useful when investigating pipelines and garbage collector
behaviour.

System.out.println("Memory: " + mb.getHeapMemoryUsage().getUsed() +
 "/" + mb.getHeapMemoryUsage().getMax());

